Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1005). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Arend, H. \& Huber, W. (1978). J. Cryst. Growth, 43, 2213-2223.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Molecular Structure Corporation (1987). TEXSAN. TEXRAY Structure Analysis Package. Revised. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Needham, G. F. \& Willett, R. D. (1984). J. Phys. Chem. 88, 674-682.

Acta Cryst. (1995). C51, 2287-2289

Cadmium(II) \boldsymbol{N}-(\boldsymbol{p}-Tolylsulfonyl)glutaminate

Gigliola Lusvardi, Ledi Menabue and Monica Saladin

Dipartimento di Chimica Universitá di Modena, via Campi 183, 41100 Modena, Italy

(Received 7 February 1995; accepted 20 April 1995)

Abstract

Crystals of $\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\right]$ contain a twodimensional polymeric network in which Cd^{2+} ions are octahedrally coordinated by O atoms.

Comment

In the title compound, (I), the Cd^{2+} ion lies on a crystallographic twofold axis and exhibits octahedral coordination, being attached to six different amino acid residues, thereby giving rise to a layer structure in the $a b$ plane. Each amino acid residue is linked to three different Cd atoms through its carboxylic and amide O atoms; the carboxylate group bridges two Cd atoms in a syn-syn configuration. The same type of amino acid coordination has been found previously in $\left[\mathrm{Mn}(\mathrm{tsgln})_{2}\right][\mathrm{tsgln}=N$-(p-tolylsulfonyl)glutaminate] (Brückner, Menabue, Saladini \& Tolazzi, 1993), while in $\left[\mathrm{Cu}(\right.$ bpy $\left.)(\text { tsasn })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [tsasn $=N$ - $(p$-tolylsulfonyl)asparaginate, bpy $=2,2^{\prime}$-bipyridine] (Battistuzzi Gavoli et al., 1990) it was found that the amino acid coordinates through one carboxylic O atom only and the amide O atom is not involved in metal ligation.

(I)

Carboxylates normally act as bidentate chelating or bridging ligands towards $\mathrm{Cd}^{\mathrm{II}}$, leading to the formation of polymeric structures (Allman, Goel, Jha \& Beauchamp, 1984). However, in the title complex, (I), the carboxylate coordination is very unsymmetrical: the $\mathrm{Cd}-\mathrm{O} 1$ bond $[2.384(6) \AA$] is significantly longer than Cd-O2 [2.196 (7) \AA]. Crystal packing is mainly due to ring-ring intra- and interlayer contacts in the range 3.52 (1)-3.90 (1) \AA, and there is only one hydrogen bond: $\mathrm{N} 1 \cdots \mathrm{O}^{\mathrm{i}}=2.91(1), \mathrm{H} 6 \cdots \mathrm{Ol}^{\mathrm{i}}=2.12 \AA$, $\mathrm{N} 1-$ H6 $\cdots \mathrm{Ol}^{\mathrm{i}}=134^{\circ}$ [symmetry code: (i) $x-1 / 2, y+1 / 2$, z]; the relatively acute angle at $\mathrm{H}(6)$ is attributed to the constraint imposed by the coordination of the amide group by the metal.

Fig. 1. ORTEP (Johnson, 1965) view, with 40% probability displacement ellipsoids, of $\mathrm{Cd}(\mathrm{tsgln})_{2}$. The H atoms have been omitted for clarity.

Experimental

An aqueous solution ($0.05 \mathrm{dm}^{3}$) of cadmium(II) acetate ($0.02 \mathrm{~mol} \mathrm{dm}^{-1}$) was added to an aqueous solution ($0.02 \mathrm{dm}^{3}$) of the L -amino acid ($0.1 \mathrm{~mol} \mathrm{dm}{ }^{-1}$). After a few days a white crystalline compound separated (yield 80%). Elemental analysis: found $\mathrm{C} 40.21, \mathrm{H} 4.34, \mathrm{~N} 7.87 \% ; \mathrm{C}_{24} \mathrm{CdH}_{30} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}$ requires $\mathrm{C} 40.52, \mathrm{H} 4.25, \mathrm{~N} 7.88 \%$. The density D_{m} was measured by flotation in $\mathrm{CHCl}_{3} / \mathrm{CHCl}_{2} \mathrm{CCl}_{3}$.
N 2
S
O 4
O 5
C 6
C 7
C 8
C 9
C 10
C 11
C 12
$-0.0615(3)$
$0.0002(1)$
$-0.0265(3)$
$-0.0040(4)$
$0.1110(4)$
$0.1523(5)$
$0.2403(5)$
$0.2873(4)$
$0.2428(5)$
$0.1560(5)$
$0.3846(5)$

$0.232(1)$	$0.1933(3)$	$0.025(2)$
$0.180(1)$	$0.3016(1)$	$0.0243(7)$
$0.3531(9)$	$0.3462(3)$	$0.034(2)$
$-0.081(1)$	$0.3129(4)$	$0.031(2)$
$0.248(1)$	$0.3365(4)$	$0.031(3)$
$0.457(1)$	$0.3895(5)$	$0.042(3)$
$0.496(3)$	$0.4190(5)$	$0.053(3)$
$0.333(2)$	$0.3979(5)$	$0.049(4)$
$0.126(2)$	$0.3437(5)$	$0.049(4)$
$0.083(2)$	$0.3129(5)$	$0.040(3)$
$0.374(3)$	$0.4340(6)$	$0.072(5)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cd}-\mathrm{Ol}$	2.384 (6)	C2-C3	1.527 (8)
$\mathrm{Cd}-\mathrm{O}^{\text {² }}$	2.196 (7)	C7-C8	1.38 (1)
$\mathrm{Cd}-\mathrm{O}^{11}$	2.264 (3)	C2-N2	1.47 (1)
$\mathrm{S}-\mathrm{O} 4$	1.432 (6)	C8-C9	1.38 (2)
N2-S	1.633 (4)	C3-- 4	1.52 (1)
$\mathrm{S}-\mathrm{O} 5$	1.402 (6)	C9-C10	1.39 (1)
$\mathrm{O} 1-\mathrm{Cl}$	1.21 (1)	C4-C5	1.49 (1)
S-C6	1.767 (7)	C9-C12	1.51 (1)
$\mathrm{O} 2-\mathrm{Cl}$	1.28 (1)	C5-N1	1.33 (1)
C6-C7	1.38 (1)	C10-C11	1.36 (1)
$\mathrm{C} 1-\mathrm{C} 2$	1.53 (1)	C5-O3	1.225 (9)
C6-C11	1.38 (1)		
$\mathrm{O} 3^{\text {II }}-\mathrm{Cd}-\mathrm{O}^{\text {i11 }}$	178.5 (3)	S-C6-C11	118.8 (6)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd}-\mathrm{O}^{\text {iii] }}$	93.8 (2)	S-C6-C7	120.0 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd}-\mathrm{O}^{\text {iii }}$	87.0 (2)	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$	124.8 (6)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O}^{\text {12 }}$	112.4 (2)	C7-C6-C11	121.1 (8)
$\mathrm{Ol}^{2}-\mathrm{Cd}-\mathrm{O}^{\prime \prime}$	91.4 (2)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	113.1 (6)
$\mathrm{Ol}^{2}-\mathrm{Cd}-\mathrm{O}^{1}$	160.2 (2)	C6-C7-C8	118.1 (8)
$\mathrm{Ol}-\mathrm{Cd}-\mathrm{O}^{3 \prime}$	87.4 (2)	$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$	122.1 (7)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O}^{1 *}$	160.2 (2)	C7-C8-C9	122.2 (9)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O}^{\prime}$	86.9 (2)	$\mathrm{C1}-\mathrm{C} 2-\mathrm{N} 2$	111.4 (5)
$\mathrm{Ol}-\mathrm{Cd}-\mathrm{Ol}^{*}$	74.3 (2)	C8-C9-C12	121.4 (9)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	118.5 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	110.7 (4)
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 3$	121.4 (8)	C8-C9-C10	117.6 (8)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{S}$	116.6 (4)	C3-C2--N2	110.5 (5)
N2-S-C6	108.5 (3)	C10-C9-C12	120.9 (9)
$\mathrm{N} 2-\mathrm{S}-\mathrm{O} 5$	106.0 (3)	C2-C3-C4	110.4 (5)
$\mathrm{N} 2-\mathrm{S}-\mathrm{O} 4$	107.6 (3)	C9-C10-C11	121.7 (9)
O5-S-C6	106.5 (4)	C3-C4-C5	113.4 (6)
O4-S-C6	107.9 (3)	C6-C11-C10	119.2 (8)
O4-S-O5	119.9 (4)	C4-C5-O3	120.1 (8)

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, y-\frac{1}{2}, z$; (iii) $-\frac{1}{2}-x, y-\frac{1}{2},-z$; (iv) $-x, y-1,-z ;(v)-x, y,-z$.

The structure was solved by conventional Patterson and Fourier techniques, and was refined by full-matrix leastsquares techniques. All non-H atoms were refined anisotropically. H atoms were located in a difference synthesis map and were treated as fixed contributors. The final $\Delta \rho$ synthesis was 'noisy' in the vicinity of the Cd atom but was otherwise featureless. All calculations were carried out on an IBM personal computer.

Data collection: CAD-4 Software (Enraf-Nonius, 1988). Cell refinement: CAD-4 Software. Data reduction: CAD4 Software. Program(s) used to solve structure: SHELX76 (Sheldrick, 1976). Program(s) used to refine structure: SHELX76. Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: PARST (Nardelli, 1983).

We are grateful to the Centro Interdipartimentale Grandi Strumenti (CIGS) of the University of Modena who supplied the diffractometer and the Ministero dell’Universitá e della Ricerca Scientifica e Tecnologica (40%) for financial support.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1179). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allman,T., Goel, R. C., Jha, N. K. \& Beauchamp, A. L. (1984). Inorg. Chem. 23, 914-918, and references therein.
Battistuzzi Gavioli, G., Borsari, M., Menabue, L., Saladini, M., Sola, M., Battaglia, L. P., Bonamartini Corradi, A. \& Pelosi, G. (1990). J. Chem. Soc. Dalton Trans. pp. 97-100

Brückner, S., Menabue, L., Saladini, M. \& Tolazzi, M. (1993). Inorg. Chim. Acta, 214, 185-191
Enraf-Nonius (1988). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Ugozzoli, F. (1987). Comput. Chem. 11, 109-120.

Acta Cryst. (1995). C51, 2289-2292

(Hexamethylenetetramine)diiodomercury(II), HgI_{2}.hmt

Per H. Svensson and Lars A. Bengtsson-Kloo
Chemical Center, University of Lund, PO 124, S-22100 Lund, Sweden
Harald Stegemann
Institute of Inorganic Chemistry, Ernst-Moritz-ArndtUniversity, Soldtmannstrasse 16, D-17489 Greifswald, Germany

(Received 22 December 1994; accepted 24 April 1995)

Abstract

The reaction of $1,3,5,7$-tetraazatricyclo[3.3.1.1 $1^{3,7}$]decane, trivial name hexamethylenetetramine (hmt), and HgI_{2} (molar ratio 1:1) in ethanol or acetone diiodide (1:1), gives the title compound, catena-poly[diiodomercury-$\mu-1,3,5,7$-tetraazatricyclo[3.3.1.1 ${ }^{3,7}$]decane- $N^{1}: N^{5}$], $\left[\mathrm{HgI}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4}\right)\right]\left(\mathrm{HgI}_{2}\right.$.hmt). The crystal and molecular structure of the title compound have been determined by X -ray structure analysis. Hgl_{2}.hmt belongs to the class of donor-acceptor complexes between hmt and metal salts. Hg is fourfold coordinated by two I and two hmt ligands. hmt acts as a bifunctional bridging ligand forming bent $(-\mathrm{Hg}-\mathrm{hmt}-)_{n}$ chains in the \mathbf{b} direction of the Pnma space group.

Comment

A large number of hexamethylenetetramine (hmt) complexes were reviewed in 1931 (Alpeter, 1931). Only a few of the complexes have been structurally analysed. hmt has four N -atom lone electron pairs which allow various coordination types in complex chemistry. Five types of hmt coordination in complexes with metal salts can be distinguished:
(1) hmt as a non-metal-coordinated structure element. Compounds of this type are often found in complexes containing water of crystallization, for instance in $M X_{2} \cdot 2 \mathrm{hmt} .10 \mathrm{H}_{2} \mathrm{O}$, with $M X_{2}=\mathrm{CaBr}_{2}$ (Mazzarella, Kovacs, de Santis \& Liquori, 1967), CoCl_{2} (Ganesh, Seshasayee, Aravamudan, Heijdenrijk \& Schenk, 1990), MgCl_{2} (Kovacs \& Mazzarella, 1966) or $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ (Viossat, Khodadad \& Rodier, 1981), in $M \mathrm{Cr}_{2} \mathrm{O}_{7} .2 \mathrm{hmt} . y \mathrm{H}_{2} \mathrm{O}$, with $M=\mathrm{Ca}, y=7$ (Dahan, 1975) or $M=\mathrm{Mg}, y=6$ (Dahan, 1974), or in hexacyanoferrate complexes $M_{a}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{b} . x \mathrm{xmt} . y \mathrm{H}_{2} \mathrm{O}$ of various composition with $M=\mathrm{Li}, \mathrm{Mg}, \mathrm{Sr}, \mathrm{Ba}, x=1-4$ and $y=4-11$ (Meyer \& Pickardt, 1988a,b,c,1989; Pickardt, Kahler, Rautenberg \& Riedel, 1984). In all these compounds hmt is not part of the metal-coordination sphere.
(2) hmt as a monofunctional ligand. This coordination type has only been found in a few complexes: $\mathrm{Mo}(\mathrm{CO})_{s}$.hmt (Hui, Chan \& Mak, 1984), $\left(\mathrm{ZnCl}_{2}\right)_{3}$.hmt. $12 \mathrm{H}_{2} \mathrm{O}$ (Mak \& Huang, 1987), $\mathrm{Cd}\left\{\mathrm{P}\left(\mathrm{S}_{2} \mathrm{O}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}_{2} .2 \mathrm{hmt}$ (Shimoi, Ouchi, Aikawa, Sato \& Saito, 1982). The structures of these compounds consist of isolated molecular units or networks formed by μ-halogeno bridges.
(3) hmt as a bifunctional bridging ligand. This is the most common type of hmt coordination. Depending on coordination number and the shape of the metal, different networks are formed, e.g. in $\left(\mathrm{CdCl}_{2}\right)_{2}$. hmt. $5 \mathrm{H}_{2} \mathrm{O}$ (Lai \& Mak, 1983), $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$.hmt. $2 \mathrm{H}_{2} \mathrm{O}$ (Viossat, Khodadad \& Rodier, 1982), $\left(\mathrm{CdI}_{2}\right)_{3} .2 \mathrm{hmt} .4 \mathrm{H}_{2} \mathrm{O}$ (Mak, 1982; Pickardt 1981b), $\left[\mathrm{Hg}(\mathrm{SCN})_{2}\right]_{x} . \mathrm{hmt}, x=1,2$ (Mak \& Wu, 1985, 1986), (CuCN) $)^{2} 2 \mathrm{hmt}$ (Pickardt \& Rautenberg, 1982) or $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]_{2}$.hmt (Pickardt 1981a).
(4) hmt as a trifunctional bridging ligand. To our knowledge, there is only one structure of this type published. AgNO_{3}.hmt consists of $\mathrm{Ag}-\mathrm{hmt}-\mathrm{Ag}-\mathrm{hmt}$ chains. These chains are linked by additional Ag-hmt bonds. Every hmt ligand thus connects three Ag atoms (Michelet, Viossat, Khodadad \& Rodier, 1981).
(5) hmt as a tetrafunctional bridging ligand. This coordination type is known for $(\mathrm{AgX})_{4}$.hmt with $X=\mathrm{Cl}, \mathrm{Br}$ (Mak, 1984, 1985). All four N-atom lone pairs of each cage molecule serve as ligands, giving rise to octahedral $\operatorname{Ag} X_{5} \mathrm{~N}$, tetrahedral $\mathrm{AgX}_{3} \mathrm{~N}$ and tetragonal pyramidal $\mathrm{Ag} X_{4} \mathrm{~N}$, forming a three-dimensional network.

Alpeter (1931) described the following mercury halide hmt complexes: $\mathrm{Hg} X_{2}$. hmt with $X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$; $2\left(\mathrm{HgX}_{2}\right)_{2}$.hmt with $X=\mathrm{Cl}, \mathrm{Br} ;\left(\mathrm{HgX}_{2}\right)_{3} .2 \mathrm{hmt}$ with X $=\mathrm{Cl}$, I. However, no crystal structure of these com-

